utage etrieval by Content: A Mad iine 1 caming Approach

Usama M . Jayyad Padhraic Smyth

Jet 1 ’ropulsion Laboratory, M/S 525- 3GG0
California Institute of Technology
Pasadena, CA 91109
{fayyad,pjs}@aig.jpl.nasa.gov

ABSTRACT

11 arcas as diverse as Farthremote sensing, astronomy, and medical iinaging, there has been an explosive growth
in the amount of image data available for creating, digital image libr aries. However |, thelack of automated analysis
and uscful retrieval methods st and in the wa y of arecating ttue digit alimage li braries.  In order to perfor m quer y-
by-content type scarches, t] e query for imulation problem needs to be addr essed: it is often not possible for users
to formulate the targets of their scarches i1 terms of queries. We present @ natur d anid powerful approach to this
problem 10 assist, scientists in exploring large digitalimage lilnar its. We t a1 get asystem that the user trains to find
certain patierns by providing it with examples. The lear ning algor ithins use the training, data to produce classifiers 1o
deteet and identify other targets in the large image collection. This forms the basis for query by conitent capabilitics
and for library indexing p urposes. Wc ground the discussion by presenting, two such applications at J] 1, the SK1CAT
system used for the reduction and analysis of a 3 terabyte astr onomi cal data set, and the JARtool system to be used
in automatically analyzing the Magellan data set consisting, of over 30,()()0 nnages of the surface of Venus. General
issues which impact the application of lcarning algorithios to itnage analysis applications are  discussed.

Keywords: machine lecarning, pattern recognition, automated data analysis and archival, large image databases,
query |y content.

1 INTROI YUCTION

Image acquisition technology has under gone 1 cinendous improvements in 1 ccent years. The vast amounts of
scientific data, stored in the forin of digital iinage libravies, are potential t casure-troves for scientific investigation
and analysis. Unfortunately, advan ces inour ability to deal with this volume of dat ain an eflective manner have not
paralleled the hardware gains in storage technology and data gathering instr uments. While special-purpose tools for
particular applications exist, no general-purpose software tools and algorithis which can assist a scientist in exploring
large scientific image librarics are available. This paper presents our recent p rogr ess in developing interactive semi-
automated image library ¢ xploration tools based on patter n recognition and machine learning techniques.  ‘J'wo
successful applications at JP1, will be used to g round the discussion and point out the powerful impact such learning,
tools canhave. We then proceedto discuss the gener al problem of automnated image librar y exploration, the particular
aspects of image dat abases which distinguish them from other ¢ atabases, and 1oy this iinpacts the application Of
off-the-shelf learning algorithins to problemns of this nature.

We ar ¢ developing, tools that can be trained by example to execute diflicult quer y-by-content type tasks on large
image databases, A scientist provides training examples by locating candidate t arpets within an iimage on the sereen.
The learning algorithins use the training data to produce a classifier that will detect and identify other targets in



alarge library of similar images. The scientist can thus customize the tool to scar ¢h for one type of visua feature
versus another simply by providing positive and n¢gative exainples. This IS a non-intrusive method in the sense
that it will not require thie scientists to perform anything different from what they do now; the task is sinply to
examine an image and determine objects of interest withiu it. Such a tool caty be used to navigate through large
digital libraries to performimage analysis, cataloging of image contents, and Inowsing, by specifying examples. In
addition to automating laborious and visually-intensive tasks, it provides the means for an objective, examinable,
and repeatable process for det ecting and ¢ lassifying object s 11 11 ages.

1.3  The Query Formulation ’rolhlem

Work on techniques for digital liby aries has focused mainly on digitization techniques, storage and retrieval
mechanisms, and database lype issues dealing with eflicient indexing and query exeeution. We believe there is an
important and crucial problem that needs to be addressed befor e collections of digital images cary be turned into
uscful digital lbraries, namely the gquery formulation pr oblan. Users would like to be able to usc! a digital immage
library to scarch for par titular patterns for cataloging orinvestigative purposes. A typical query would be something
like: “in how many images docs this patternn occur?”’ or “catalog al ocewrcences and sizes of objects in images
satisfying certain conditions.” Unfortunately, unlike the Case where one is dealing with a relational database or the
text of a book, there is no easy way for the user to formulate the requit ed query.

We propose an approach that calls for developing a system that learns from examples. Hence rather than issuing
querics, the user simply provides training examples and then asks the systemn to “find al objects that look like
this” The approach promises to bypass the ques y for mulation bottleneck in the way humans currently interact
with large databases. For most interesting tasks of bnage analysis, formulating, queries to specify aset of target
objects/regions requires solving difficult, problems that ofteninvolve effect ively translating human visual intuition
into ])ixcl-level algorithmic constraints. This is a fair ly challenging task inits own right. Querying a database
by providing examples and counter-examples for ms a novel and powerful basis for a new generation of intelligent
database interface tools. 1'hese tech, ca] »able of peiforming “query by content” type operations on large iinage
databascs, promise a fundamental paradign shift of the inter face betweer | scienitists and image databasces, and could

enable Orders of magnitude improvements inboth the quantity and quality of scientific analyses of digitized image
libraries.

To ground the discussion, wc provide two illust1 ative exainples of current projects at J'], involving the develop-
ment of image exploration algorithims and tools with buili-in classification lear ning comnponents. We first introduce
the SKICAT system used to automaticall y generate ala ge comprehensive sky object catalog from a set of sky survey
images a a major astronomical observatory. The sccond systen, called JARtool is intended for usc on the Magellan
collection Of over 30,000 SAR ninages of the surface of Venus. Both systems use machine learning technigues and are
trained by the scientists to perform the analysis work. The SKICAT results demonstrate how powerful a learning
system can be, resulting in performance that exceeds that of human ast onomers in recognizing faint sky objects.
The paper concludes with a general discussions of lcatning in digital image liby aries and the special advantages and
challenges that image databasces provide.

2 CASE STUDY 1: THE SKICAT SYSTEM

The Sky lmage Cataloging and Analysis Tool (SKICAT) has been developed for usc on the images resulting from
the 2nd Palomar Observatory Sky Survey (1'OSS 11) conducted by the Califor nia Institute of Technology (Caltech).
The photographic plates are digitized at the Space Telescope Science Institute, 1esulting in shout 3,000 digital images
of 23, 040" x 23, 040 pixels cach, totalling over three terabytes of data. When comnplete; the survey will cover the entire
northern sky inthree colors, detecting, virtually every sky objectdown to a B magnitude of 22 (a normalized mecasure
of object brightness). This is at least one magnitude fainter than previous compar able photographic surveys. We
estimate that, at least 5 x 107 galaxies and 2 x 107 stellar objects (including, over 10" quasars) will be detected. This



data set will be the most comprehensivelar ge-scale imaging survey produced to date and will not be surpassed in
scope until the completionof a fully digital al-sky survey.

The purpose of SKICAT isto facilitate the extraction of meaningful information fi mu such alarge database inan
cfficient and timely manner. The first step in analyzing the results of a sky survey is to identify, mecasure, and catalog
the detected objects in the image into their respective classes. Once the objects have been classified, further scientific
analysis can proceed. For examnple, the resulting catalog may be used to test models of the formation of latge-scale
structure in the universe, probe Galactic struct ure from star counts, per form aut omat ic identifications of radio or
infrared sources, and so forth.11:36:37 Reducing the images (o catalog entries is an overwhelming, task which inherently
requires anautomated app roach. The goal of this project is to automate this process, providing a consistent and
uniform methodology for reducing the data sets. T'his will provide the 1 icans for objectively performing tasks that
formerly required subjective and visualy intensive manual analysis.

Animportant goal of this work is to classify objects whose intensity (isophotal magnitude) is too faint for recog-
nition by inspection, hence requiring an automated classification procedur e. Faint objects constitute the majority
of objects on any given plate. We target the classification of objects that arc at least, one magnitude fainter thau
objects classified in previous surveys using comparable photographic material. We shall briefly give a general, high-
level description of the application domain, and report on the successful results which exceeded our initial accuracy
goals. We therefore do not provide much of the details of either the learning algorithims or the technical aspects of
the domain. We aimn to point out an instance where learning algorithins proved to a be useful and powerful tool in
the autornation of scientific data analysis.

2.1 Classifying Sky Objccts

SKI1CAT provides an integrated environment “for the construction, classification, management, and analysis of
catalops from large-scale imaging surveys. 1ueto the large anounits of data | reing collected, a manual approach
to detecting and classifying sky objects iu the images is infeasible: it wouldiequire on the order of tens of man
years. Bxisting computational methods for classifying the iinages would preclude the identification of the majority of
objects in cach image since they arc a levels too faint for traditional algor ithnis or even manual inspection/analysis
approaches. A principal goal of SKICAT is to provide an effect ive, objective, aud examinable basis for classifying
sky objects atlevels beyond the limits of existing techuology.

Figure 1 depicts the overal architecture of the SKI CAT plate catalog constructionand classification process. Kach
plate is subdivided iuto a set of partially overlapping frames. I.ow-level image processing aud object separation is
performed by a modified version of the public domain FOCAS image processing softwar ¢.22311 he image processing
steps detect contiguous pixelsin the image that arc to be grouped as one object. Attributes arc then measured
based on this segmentation. The total number of attributes measured forcach object by SKI1CAT is 40, including
magnitudes, arcas, sky brightness, pcak values, and intensity weight cd and unweighted pixel moments.

Once dl attributes, including normalized and non-linear combinations of these attributes, arc mecasured for
cach object, final classification is performed on the cat slog. Our current goal is to classify objects into four major
categories, following the original scheme in FOCAS: star, star with fuzz, galasy, and artifact. Wc may later refine the
classification into more classes, however, classification into one of these fourclassesiepresents adequate discrimination
for primary astronomical analyses of the cataogs.

2.2 Classifying Jaint Objeccts

In addition to the scanned photographic plates, we have aceess to CCD itages that span several small regions
insome of the framces. The main advantage of a CCD image is higher 1 esolution and sigllal-to-noise ratio at fainter
levels. Hence, many of the objects that are too faiut to be classified by insprection on a photographic plate arc casily
classifiable in a CC1) image. In addition to using these iinages for photometi ic calibration of the photographic plates,
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Figure 1 Architecture of the SKICAT Cataloging and Classification Process

we make use of CCD images for two machine lear ning purposes: 1. they enable us to obtain class labels for faint
objectsint he photographic plates, and 2. accurate assessment of our classifier results.

In order to produce a classifier that classifies faint objects correctly, the learning algorithm needs training data
consisting of faint objects labeled with the appi opriate class. ‘I'his class label is obtained by examining the CCD
frames. Omnce trained on properly labeled objects, the lear ning, algorithim produces a classifier that is capable of
properly classifying objects based on the values of the attributes provided by FOCAS. Hence, in principle, the
classificr will be able to classify objectsin the photographic iinage that are too fainut for an astronomer to classify by
mnshection. We target the classification of sky objects that arc at least onc niagnitude fainter than objects classified
inphotographic al-sky surveysio date.

2.3 Results and Yuture Work

The training and test, data consisted of objects collected fromn four different plates fromn regions for which we had
CCl)image coverage (since this is data for which accurate classification is available). The learning algorithms are
trained on a data set from 3 plates and tested on data from the rernaining plate for cross valid ation. This estimnates
our accuracy in classifying objects act 0ss plates. Note that the plates cover different regions of the sky and that
CC1) frames cover multiple, very small portions of each plate The training data consisted of 1,688 objects that
were classified manually by an astronomer by examining the corresponding CCD frames. It is noteworthy that for
the majority of these objects, the astronomer would not be able to reliably determine the classes by examining the
corresponding survey (digitized photographic) images. All attributes used by the learning algorithms arc derived
from the survey immages and not, of course, from the bigher resolution CCD fi anes.

The learning algorithms used are based on efficiently generating decision tiecs or rules from the training data. 1t
is beyond the scope of this paper to cover the algoriths. Intercsted readers arer eferred to 1% fora discussion of the
algorithins. The classificat jon results may be sunnnarized as follows: 1 decision tree learning algorithms G11)3*16 and
O-Btree!® performed in the range of 91 % accuracy of prediction. By using RULER, ' a progran that generates many
decision trees and optimizes them by extracting arobust set of classification i1ules via cross-validation, statistical
pruning, and g reedy covering, a stable result Of 94% accwr acy has been acl 1 ieved. For comparison, a commercially
available decision tree learning algorithin called 1D3 (or C4.5)*7 adhicves only about 76°/0 accuracy on average.

Note that such high classification accuracy results could only be obtained after expending significant effort



on defining more robust attributes that captured suflicient invariances between various plates. When the same
experiments were conducted using only the hase-level at tributes measured by FOCAS, the results were significantly
worsc. The error rates jumped above 20% for ()- Bl cee, above 25% for G113 | and above 30% for ]] )3. The respective
sizes Of the trees grew significantly as well "

‘J 'he SKI CA'Y project represents a step Ltowards the developiment of an 01 )Hjective,1eliable automated sky object
classification method. ‘J "he initial results of our eflort to automate sky object classification in order to automatically
reduce the images produced by 1'0SS-11 to sky catalogs areindeed very encouraging.  Using machine learning,
techniques, SKICAT classifies objects that aie a least one mapnitude fainter than objects cataloged in previous
surveys. Thisresultsin a 2(K)% increase inthe nuinber of classified sky objects available for scientific analysis in
the resulting sky catalog database. I‘urthermore, we have exceeded our initial accuracy target of 90%. Thislevel of
accuracy is required for the data to be useful intesting or refuting theories onthe formation of large structure in
the universe and on other phenomena of interest 1o astronomers. SKI CA'T is now being employed to both reduce
and analyzc the survey images as they arrive from the digitizati on instrument. We are also beginning to explore the
application of SKICA' to the analysis of other surveys planned by NASA and other institutions.

A cousequence of the SKICA'T work is a fundamental change in the notion of a sky catalog from the classica static
entity “in print”, {0 a dynamic, ever growing, ever improving , on-line databasc. Animportant feature of the survey
analysis system will be to facilitate such detailed interactions with the catalogs. ‘J'he cataog generated by SKICAT
will eventually contain about a billion entries representityg hundreds of millions of sky objects. We view our effort as
targeting the development of a new generation of intelligent scientific analysis tools. 3711 Without the availability of
these tools for the first survey (1°0ss-1) conducted over four decades ago, 110 abjective and comnprehensive analysis
of the data was possible. In contrast, we are targeting a comprehiensive sky catalog that will be available on-line for
the use of the scientific community.

As part of our plans for the future we plan to begin investigation of the app licability of unsupervised learning
(clustering) techniques such as AUTOCLASS to the problem of discovering, clusters or groupings of intercsting
objects. The initial goals will be to answer questions like: 1. Are the classes of sky objects used currently by
astronomers justified by the data: do they naturally ariscinthe data? ‘2. Arcthereother classes of objects that
astronomers were y ot aware of because of the difliculty of dealing, with high dimensional spaces defined by the various
attributes? The longer term goal is to evaluate the utility of unsupervised learning, techniques as an aid for the types
of analyses astronomers conduct after objects have been classified into known  classes.

3 CASE STUDY 2: VOLCANO DETECTION IN
MA GELLAN-VENUS 1)ATA

The Magellan-Venus data set. constitutes yet another example of the large voluines of data that today s instru-
ments can collect, providing more detail of Venus thane was previously available from Pioneer Venus, Venera 15/16,
or ground-based radar observations put together.29 ‘I'he Magellan spacecrafl transmitted back to earth a data set
consisting of over 30,000 high resolution (75 22bm par pixel), 1024 pixel square, synthetic aperture radar (SAR)
itnages of the Venusian surface. Planctary scientists are literally swamped by data.

We arc targeting the antomated detection of the “small-s hicld” volcanocs (less thau 15km in diameter) that
constitute the most abundant visible geologic feature on the surface of Venus.'¢ ldentifying and studying these
volcanoes is fundamental to a b roper understanding of the geologic evolution of Venus. Central to volcanic studies
is the cataloging of cach volcano location, its size, and characteristics. It is estimated, based on extrapolating from
previous studies and knowledge of the underlying geologic P rocesses, that there should be 011 the order of 108 of
these volcanoes visible in the Magellan data®?! (scattered throughout the 30,000 images). Furthermore, it has been
estimated that inanually locating, al of these volcanoes would require 011 the order of 10 Inal-years of a planctary
geologist’s ti]ncto carry out,. However,locating and parametetizing them in a manual manner is forbiddingl y time-
consuming. 1 ence, we have undertaken the development Of techniques to partially automate this task. An example
imagc showing volcanocs appears in Scction 4.”2
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Figure 2: Block Diagramn of the JARtool Systemn

3.1  General Approach and Initial Results

T'here has been little prior work on detecting naturally occurt ing objects in 1 emotely-sensed images. Much of the
contemporary work in computer vision is model-based. While this works well for detecting man-made objects, the
model-based approach often deals poorly with the variability in appeara nce of natural objects and the noise present
in typical remotely sensed data.® 26 Jlence for example, while 1T, is impractical to specify an eflective model for
volcano detection based on prior knowledge, it is 1nuchi more straightforward to have the scientists provide examples
of volcanoes and consequently try to learn the mapping, from pixel space to volcano/non- volcano categories.

Wc are developing a system called JARtool (J]'], Adaptive Recognition ‘1'001) that consists of threc distinct
components: focus of attention, feature Jearning/ex traction, and classification lcarning. Figure 2 gives a block
diagram of the approach. Our initial work in this problemn has relied 011 the concept of using a focus of attention
(1FOA) method to detect regions of interest followed by local classification of regions of interest iuto volcano and non-
volcano categories. The focus of attention component is designecd primarily for computational efficiency. Its function
is to quickly scan an juput image and roughly determine regions of inter est (regions potentially containing objects
similar to those specified by the scientist). For this purpose we nave used a matched filter which is automatically
constructed from the training data by taking a noninalized average of all volcanoesinthe training set.*This approach
detects the majority of volcanoes (including all of the volcanoes for which the scientists are most confident, in their
labeling). False alarms arc caused by craters, grabens, other bright featu es, and SAR  noise.

Given a set of detected regions of interest, one must t hendiscriminate et ween the voleanoces and the false alarms.
A current, focus of therescarchisto find a useful feat ure-tepresentation space - arcpresentation based purely on
pixels will tend to generalize poorly. For the purposes of incorporating prior knowledge the ideal feature set would be
expressedin the forin of expected sizes, shapes, and relative geometry of slopes and pits, namely, thesamne features
as used by the scientists to describe the volcanoes. | Jowever, due to thelow si?[la-to-noise ratio of the image, it
is quite diflicult to accurately estimate these features, eflectively precluding their usc at present. The current focus
of our work is onamethod which automatically derives1obu st {eatur ¢ representations (see Scction 4. 1 for more
details).

We have constructed several training, sets using 75iu/pixclresolutionimages labeled by the collaborating geologists
at Brown University to get an initial estimate of the perforinance of the systemn. The FOA component typically detects
more than 85% al the volcanoes the 15% which are not detected ar ¢ ones which the scientists have labeled as
“marginal” or lower probability volcanocs. Since it is designed to act as an 488! essive filter, the FOA component
gencrates b to 6 times as inany false alanmms as true detections. Usiug amaximume-likelihood Gaussian classifier,
and featur es derived via a principal comnponent decomposition of local pixel windows (S0t Section 4 .1), initial cross-
validation results on a particular region of the planet have shown that the system can classify volcanoes with similar
accuracy tothat of scientists 011 the same data !




4 LEARNING ISSUESIN IMAGE DATA 13ASE ANALYSIS

Having discussed the particular details of both the 1 ‘0 SS-11 and Magellan- Venus databases and the particular
systems we have implemented, the remainder of the paper will focus on the generalissues which arise in problems of
this nature.)” 1, ¢ focus will 1,0 on some of the complicating, factors which arise when image analysis and learning
algorithins are combined: the role of prior information, lack of absolute ground truth, modeling spatial context,
online learning and adaptation, and multi-sensor /t hematic map data.

4 .1 The Role of Prior Information

In general, prior information about animage exploration problem can be specified in two ways. The first is in
terms of relatively lIliglk-level knowledge specifying expectations and constraints regarding certain characteristics of
the objects of interest. For example, in the Magellan- Venus problem the incidence angle of the synthetic aperturc
radar instrument to the planet’s surface is known, which in turn str ongly influences the relative positions of bright
and dark slope and summit regions for a given volcano. 2° The second type of prior information is the information
which is implicitly sp e cified by the labeled data, i. ¢., the data which have b cen examined by the domain expert and
annotated in some manner.

One must determine the utility of each type of informmation in designing, an immage exploration algorithin. For ex-
ample, in the SKICAT project, the prior knowledge was quite precise and helpeda preat ded interms of determining
the optimal features to usefor the problem. lu contrast, for the Magellan-Venus problem, the prior knowledge is
quite general in nature and is not easily translatable into algorithmic constr aints, leaving us only with the labeled
training, examples provided by the scientists.

Raw pixel data rarely provide a good basis for learning  appropriate pixel - derived feawres can typically provide
amuch more robust representation. Inscientific data analysis, where the user typically knows the data well and has a
list of defined features, sclecting the appropr iatc feature to prescent to thelearning algorithm can be straightforward.
SKICAT provides an excellent example of this. Not only was t e segimentationproblem (locating objects) easy to
perform, but we had access to a host of defined atts ibutes that we miade nse of effectively. Iaving the proper
representation made the diflerence between success and failure.

In Order for SKICAT to achieve stable classification accuracy results oniclassifying data fromn diflerent plates,
we had to spend some effort defining normalized attributes that are less senisitive to plate-to-plate variation. These
attributes are computed automatically from the data and are defined such that their values would be normalized
withinand across images and plates. Many of these quantities (slthough ot all) have physical interpretations. Other
quantities we measured involved fitting a template to a set. of “suire-stars” sclected by the astronomer for each image,
and then measuring therest of the objects with1espect to this template. In order to automate the measurement
of such attributes, we automated the “sure.star” selection problem by treating it as a learning sub-problem and
building decision trees for selecting “sure-stars” inan at bitrary iinage. Fortuniately, this turned out to be a relatively
casy learning task: out accuracy on this subpi oblem exceeds 98%. This allowed us to automate the measurement
of the necded and inore sophisticated attributes. In this casc a wealth of kniowledge was available to us in terms
of attributes (tncasureinents ), while astronomers fourl it, difficull to use these attributes to classify objects. The
machine lcarning algorithins were able to produce a classifier that used many (as many as cight) dimensions. No
projection of the data onto two or three dimensions would have allowed as accurate a classification, explaining the
difliculty hurnans found in designing the classificr.

Onthe other hand, in the case of the Magellan-Venus data, the featur ¢ ex traction problemn is significantly more
diflicult to address. Onc approach we have been experimenting with is the use of i incipal component analysis.3
I"hell training example (@ subimage containing a positive example) can be tinned into a vector of pixel values. The
entire training set on n examples, cach of which consists of a & X k pixcl subimage, will thus form ak? x n matrix
which can subsequently be decomposed into a set of orthonor mal cigenvectors using, singular value decomposition
(SVD). Ancigenvaluc is associated with each of the vectors indicating its relative importance. When the cigenvectors




Figure 3: Eigenvolcanoes Derived from Training 1)ata.

(cigenvoleanoes) are viewed as images again, wenote that each J epreseutsa “hasic” feature of a volcano. Figure 3
shows 20 associated cigenvolcano features (tliose corresponding t 0 the largest cigenvectors) ordered left to right by
decreasing, cigenvalues. Note that the cigenvectors b ecome less coherent star ting with the sixth or seventh feature.
ach Mock in the figure corresponds to a 225-component cigenvector that was 1 ¢t ranslatedinto a 15 x 15 image and
redisplayed as a block in the figure.

The cigenvolcanoes can be viewed as gener al feat ures that can be used to enicode cach detected candidate volcano
for classification purposcs. This is an example of anautomatic ternplate (n late) wed filter) generation procedure which
can casily be augmented by other features provided Iy t he expertuser. 1 lowever, the drawbacks of the SV1) approach
arc worth mentioning: in gencral, the inethod can be sensitive to scale, rotation, and translation distortions (although
these arcnot significant problems for the volcano problem) and it is diflicult to encode prior knowledge about the
domain into the model.

4.2 T,ack of Absolute Ground Truth

In statistical pattern recognition and machine lea ning, supervised learning, iinplicitly assumes that the “target
signal” corresponds to ground truth. In itnage anal ysis, the labeling, s often not in fact “ground truth”, W here ground
truth is taken to mean that the object of interest has hiad its identity ascertained by a separate 1inage-inde} yendent,
measurement. with near-7Jcro ambiguity. Instead, objects of interest may be labeled in a subjective manner by a
scientist. 1T the signal-to-noise ratio (SNR) of the images is high enough then the subjective estimates may be
accepled as near enough to ground-truth for practical purposes. This is the case with the SKICAT data, especially
with the use of higher resolution CC imnages to obtairl training data. However for the Magcllar | _venus data, with low
SNR, there can be some variability between diflerent scientists (and the same scientist at different times) in labeling
a particular image. in such a case, treating such subjective estimates as ground truth is to ignore a potentially
important source of noise in the data

1t is animportant point that, in the absence of absolute ground truth, the goal of our work is to be as comparable
in performance as possible to the scientists in terins of labeling, accuracy. Absolute accuracy is not mecasurable for
this problem. Hence, the best the algoritlnn can do is to emulate the scient ist’s per formance. Also, the learning
algorithms should be able to make use of probabilistic class labels during learning. 3!

Given that the scientists cannot classify each objeet with 1 00% con fidence, how can we assess how well 0111
algorithms arc performming? Que approach is to mecasure the performance of individual scientists with respect to a
“consensus ground truth” , where the consensus datea is generated by seven alscientists working together discussing
the merits of cach candidate volcano. The performance of analgorithinis considered to be satisfactory if, compared
to conscnsus ground truth, its performance isas good as that of anindividual scientist. The philosophy here is that
if asingle scientist is qualified to perform ¢he analysis, tha it is sufficient if owalgorithms perforin  comparably.

The scientists label training exan iples into quantized prohabilit y bins or “types”, where the probability bias
correspond to visualy distinguishable sub-categories of volcanoes. In particular, we have used 4 types: (1 ) summit
pits, bright-dark radar pair, and apparent topographic slope, all clearly visible, probability 0.98; (2) only 2 of the 3
criteria in category 1 are visible, probability 0.80; (3) no surmmit, pit visible, evidence of flanks or circular outline,
probability O.(K),; and (4) only a suinmit pit visible, probability 0.50. The P robabilitics correspond to the mean
probability for a particular type (the probability that a volcano exists at a pay titular location given that it belongs
to a particular type) and were clicited after considerable discussions with the planctary geologists. The use of



Figure 4: Magellan SAR image of Venus with con sensus labels showing sinall volcano sizes and locations

quantized probability bins to attach levels of certai nty to subjes tive image labeling is not new: the sainc app roach
is routinely used in the evaluation of radiographic image displays.®?®

We have developed a variant. of the standard receiver operating, char actaristics (ROC) called the weighted free-
responsce (WFRO C) which takes into account bot I the facts that (i) the false alarmn rate for detecting objects in
images should be normalized relative to some quantity other than the number of pixels in the image, and (ii) that
detections must be weighted both partly as detections and as false a arms, ¢.g,., if, at a particular operating  threshold,
the system detects a loca region which has refer ence probability 0.8 of being a volcano, then it inust count as 0.8 of
adetection and 0.2 of a falsc alarm.® More recently we have developed models which estimate the subjective labeling

noisc of cach individual scientist, allowing the combination into a statistical estimate of the conisensus of different
individual labelings of the same image.3?

Accounting for subjective uncertainty inthe Magcllan-Venus data set. has proven quite important. The relative
performance of algorithms and scientists can change depending on whether the labels are treated as absolute ground
truth or not.**? Hence, modeling of subjective uncertainty can be an impor taut component in combining, image
analysis and learning algorithins, particu larly when dealing wit h low SNR images.

4.3 Online lLearning and Adaplation

Another aspect of theimage exploration problem is that one would idealy like to have an algorithm which could
gradually improve its performance as it explores a particular database. This type of incremental learning has largely
been ignored by rescarchers inleartiing arid pat t ern recognition in favow of the siimpler approach of ‘{me-slot” batch
learning. The particular type of model representation being used critically influences whethier the mnodel is easily
adaptable or not. For example, neither discriminative models (such as the decision trees used in SK1CAT) or PC A
feature generation methods (as used in JARtool) are well-suited for online adaptation. In each case, to update the
m odel to include new data, the training algorithm must be 1 un in batch miode on all of the data which has been
collected to that point. Mexr nory and prototype-hased models (including par amett ic density models, non-parametric
density estimators, mixture models, nearest-nei ghbour models, etc.) are miore suited to online adaptation  however,



they typically suffer from poor approximation propertics in high dimensions.®¢

Given a particular adaptive algorithm, a unique feature of image analysis problemns is the fact that the bureau
visual systern of the domain expert offers an excellent oppor tunit y for supervised feedback to improve adaptation.
This is in marked contrast to other domains, such as the analysis of “flat” niedical data for example, where there
is no intuitive way for a domain expert to visualize and quickly evaluate high-ditnensional vectors for the purpose
of labeling them. 1 lence, in principle, online image exploration al gor ithins could oper ate by iterative interaction
with the human user, scquentially sclecting, exarnples from the database for labeling. While such algorithm have
significant potential for changing the way in which scientists inter act with image databases, it is also clear that until
various fundamentali epresentational issues are solved (cf. learning mappings fr omn pixels to meaningful categories),
such adaptive alporithims will remain beyond our reach

4 . 4 Modeling Spatial Context

Most learning algorithms implicitly assuine that the t1aining data consists of independent randomnly chosen
samnples fron the population of interest, eg., a set of medica records for a hospital. Hetice, such algorithins may not
be directly suited to the task of learning fromimage data where there may be significant inter-pixel aud inter-object
spatial correlation present. ‘1’0 handle such correlation one canimpose spatial smoothness constraints on both the
labels and the pixel intensitics using models such as Markov random ficlds (MRIVs)!8:28 and other, more alobal,
models of spatial context!24 In any of these appr oaches there is little theory on how to reconcile inior knowledge
regarding spatial constraints with one’s choice of model parameters, so that considerable experimentation aud tuning,
is often necessary for a given application.

4.5 Multi-Sensor and Derived Map Data

A common feature in remote-imaging applications is the illunination of the same target area in different ways
(e.g., at multiple wavelengths), thus obtaining a vector of intensitics at cach pixel site rather than just a single
intensity. For example, in SK JCAT, the data was collected in thi ec optical color Lands. In the Magellan-Venus  data,
many parts of the planct were imaged from diflerent augles and at difler ent 1 esolutions. In addition, low-resolution
altimeter data was also mneasured. This results in several different, data sets being available for the same surface
regions. Similarly, after data has been acquired aud archived, diflerent resear ch groups will typically analyst the
data aud produce thematic maps and catalogs (cither by mamial or aut omat ed incans) for different quantities of
interest 6:23 For example, in the Magellau-Venus database, g 4lops have alicady been produced for large volealic
structures and for the location of many of the large volcanic fields (but, not the volcanoes within the fields).

H e nee, in the general sense, each pixel can have a vector of associat ed atiributes, whether these are data from
another sensor, or derived qualitative categories (such as a map). Inprinciple, such additional data should be
particularly useful for computer-aided detection since it is often difficult for a human user to visualize such multi-
dimensional representations. However, certain technical diflicul tics must be overcome for the additional data to be
useful. For multi-scnsor data, the different data sets must usually be 1egist ered SO that the pixel measurements are
somchow aligned to reference the same surface point  this can be an iinprecise pr ocess. Similarly, subjectively
derived thematic maps inay be subject to various biases or syst ematic erro1s. Hence, methodologies for determining
the relative reliability of different sources of information arc highly desirabie, althoughnot aways available in
practice. At a minimum, automated cataloging, systems and thematic mappers should provide a calibrated estimate
of the reliability of the decision a each pixel or region of interest (“Shatial ¢1 ror bars”). Although not afeature of
the first-generation SKI1 CAT or JARtool systeins, probabilistic models for assessing model reliability are currently
being, pursued.



5SUMMARY AND (] ONCI,US1ON

Natural object detection and characterizationin large digitalimage libraiics isa generic task which poses many
challenges to current pattern recognition and machine learning methods. This paper nas briefly touched on a nuinber
of relevant issues in problems of thisnatute. There ar ¢ inany.other issues which impact the integration of learning
and image analysis algorithins which were not discussed here due to space constraints, including the use of physical
noisc models for radar imaging processes and other wavelengths, the integration of multiple images of the same
surface area taken at-different times, and the use of multi-resolution and parallel algorithins to speed computation.,

The SKICAT and .1 ARtool projects arc typical examiples of t he types of lar p,c-scale image database applications
which will become increasingly common - for exam ple, the NASA Ear th Observing, Systemn Synthetic Aperture
Radar (KOS SAR) satellite will gencrate on the ot der of 50 G] 3ytes of 1cmote sensing, data per hour when opera-
tional.®® In order for scientists to be able to eflectively utilize t hese exty enely lar £€¢ amouts of data, basic digital
image library navigation tools will be essential.

Our existing J'], projects have so far demonstrated that efficient and accurate tools for natural object detection
are a realistic goal provided there is strong prior knowledge about how piixels can be turned into features and from
there to class categories. With the astronomy problen there was suflicient sty ong knowledge for this to be the case.
With the volcano data, the knowledge is muchi less precise and consequently  the design of effective object detection
and recognition tools is considerably more difficult. Thecommonthireadacossthevarious issues would appear
to be the problem of how to combine both prior knowledge and data. Much of the prior knowledge of a domain
scientist is vague and imprecise and canmot be  translated easily into pixcl-level constraints. However, scientists find
it significantly easier to provide attributes to measurce on a given region thau to specify the method they use to
classify theregion. This is animportant aspect that can be cxploited to solve significant problems as was done
with the SKICAT system. Thisappears to he a good solution to the quer y formulation problem, which would be a
major hurdle stan ding inthe way of turning ala £Cimage database into a digit a lilnary: be it via data reduction
(as in SKICAT cataloging) or object detection andrecognition asin JARtool. The latter @ »pears to be an essential
problem to solve if the goal of a realistic query-by-content type capability iSto t e achiceved.

Dealing with image data is uniquely appropriate for interactive tools sinceiesults canimmediately be visualized
and judged by inspection. This makes obtaining feedback and training data fromusers much easier. Since humans
fine] it Particularly diflicult to express how they perforin visual det ectionand classification, using a “learning from
examples” approach becomes particularly appropriate. The fact that the image databases are becoming increasingly
common and unmanageably large makes the need for the! type of approaches advocated in this paper par ticularly
pressing.
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